SyntaxHighlighter

Friday, 18 November 2011

srm524

Problem set analysis
Div2 - 250 ShippingCubes
public class ShippingCubes {
 public int minimalCost(int N) {
  int r = Integer.MAX_VALUE;
  for (int i = 1; i <= N; ++i) {
   if (N % i != 0) continue;
   for (int j = 1; i * j <= N; ++j) {
    if (N % (i * j) != 0) continue;
    r = Math.min(r, i + j + N / i / j);
   }
  }
  return r;  
 }
}

Div2 - 500, Div1 - 250 Magic Diamond
public class MagicDiamonds {
 boolean isPrime(long n) {
  if (n < 2) 
   return false;
  for (long i = 2; i * i <= n; ++i) 
   if (n % i == 0) 
    return false;
  return true;
 }
 public long minimalTransfer(long n) {
  if (n == 3) return 3;
  if (!isPrime(n)) return 1;
  return 2;
 }
}
Div2 - 1000 MultiplesWithLimit
Let us build infinity tree in which from every node exist edges with weigth from set of available digits. Then every path from root to some node would build digit sequence, which matches some number X. Assign every node tree value X % N. Some nodes would be have same values. Let us start breath-first-search from every child root node and would be see nodes by asceding order edge weight. As soon as we visit node with value 0 stop search. Value X, which match this node is problem answer.
import java.util.*;
public class MultiplesWithLimit {
 String correct(String s) {
  int len = s.length();
  if (len < 9) return s;
  return s.substring(0, 3) + "..." + s.substring(len - 3) + "(" + len + " digits)";
 }
 public String minMultiples(int N, int[] fb) {
  Arrays.sort(fb);
  Queue<Integer> q = new LinkedList<Integer>();
  int d[] = new int[N + 1];
  int p[] = new int[N + 1];
  int pi[] = new int[N + 1];
  Arrays.fill(d, Integer.MAX_VALUE);
  Arrays.fill(p, -1);
  for (int i = 1; i < 10; ++i) {
   if (Arrays.binarySearch(fb, i) >= 0) continue;
   if (d[i % N] != Integer.MAX_VALUE) continue;
   q.add(i % N);
   d[i % N] = 1;
   pi[i % N] = i;
  }
  while (!q.isEmpty()) {
   int x = q.poll();
   if (x == 0) {
    String ans = "";
    for (; x != -1; x = p[x]) {
     ans = (char)('0' + pi[x]) + ans;
    }
    return correct(ans);
   }
   for (int i = 0; i < 10; ++i) {
    if (Arrays.binarySearch(fb, i) >= 0) continue;
    int nx = (x * 10 + i) % N;
    if (d[nx] == Integer.MAX_VALUE) {
     d[nx] = d[x] + 1;
     p[nx] = x;
     pi[nx] = i;
     q.add(nx);
    }
   }
  }
  return "IMPOSSIBLE";
 }
}

Div1 500 - LongestSequence
At first let's find out when we can build infinity sequence. Assume max is item from C array which has maximum absolute value. If we can build sequence from 2*max element, which satisfies given restrictions then obvious we can build sequence of length 3*max, 4*max an so on. So how we can check would we can build sequence of arbitrary length. Let us consider example C = {-2, 3}. Fix some sequence length and check it. For example fix length = 3. We want find out same array A of size 3 which satisfied given restriction. We can consider array of partials sums S, where S[i] = A[1] + A[2] + ... + A[i]. Its size equals size of array A. In this way sum A[i] + A[i + 1] + ... + A[j] equals S[j] - S[i - 1]. Thus we can take restrictions from array C and write out following equations:
S[2] - S[0] < 0
S[3] - S[1] < 0
S[3] - S[0] > 0
Transform these equations in such manner:
S[2] < S[0]
S[3] < S[1]
S[0] < S[3]
Consider graph which consists from 4 vertexes (from 0 to 3) and add edges which match these equations. Thus we add following edges: (2->0), (3->1), (0->3).
If we find out any cycle then we can't build sequence of length 3 because we become contradiction (if we consider length = 4, we are going to become a graph, which contains a cycle). Otherwise if we don't have a cycle then for prove that there is a suitable sequence of need length we can observe ideas from Cormen book (chapter "Difference contstraints and shortest pahts").
Now when we can check would we can build a sequence arbitrary length, we can with using binary search to find out problem answer.
import java.util.Arrays;

public class LongestSequence {
    int C[];
    boolean A[][] = new boolean[3000][3000];
    int Color[] = new int[3000];
    int N;

    void addEdge(int u, int v) {
        A[u][v] = true;
    }

    boolean dfs(int u) {
        Color[u] = 1;
        for (int v = 0; v <= N; ++v) {
            if (!A[u][v] || Color[v] == 2) continue;
            if (Color[v] == 1) return true;
            if (dfs(v)) return true;
        }
        Color[u] = 2;
        return false;
    }

    boolean check(int n) {
        N = n;
        Arrays.fill(Color, 0, n + 1, 0);
        for (int i = 0; i <= n; ++i) {
            Arrays.fill(A[i], 0, n + 1, false);
        }
        for (int x : C) {
            if (Math.abs(x) > n) continue;
            for (int i = Math.abs(x); i <= n; ++i) {
                if (x < 0) addEdge(i + x, i);
                if (x > 0) addEdge(i, i - x);
            }
        }
        for (int i = 0; i <= n; ++i) {
            if (Color[i] == 0 && dfs(i)) {
                return false;
            }
        }
        return true;
    }

    public int maxLength(int C[]) {
        this.C = C;
        if (check(2000)) return -1;
        int lo = 0, hi = 2000;
        while (hi - lo > 1) {
            int mid = hi + lo >> 1;
            if (check(mid)) lo = mid;
            else hi = mid;
        }
        return lo;

    }
}

Div1 - 1000 AxonometricProjection
import java.util.Arrays;

public class AxonometricProjection {

    static final int MOD = 1000 * 1000 * 1000 + 9;

    long P[] = new long[50 * 50 + 1];
    long P1[] = new long[50 * 50 + 1];
    int dp[][] = new int[100][100];
    int n2, m2, K;
    int C[][] = new int[51][51];
    {
        for (int i = 0; i < C.length; ++i) {
            C[i][0] = 1;
            for (int j = 1; j <= i; ++j) {
                C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
            }
        }
    }

    int rec(int n1, int m1) {
        if (n1 == 0 && m1 == 0) return 1;
        if (dp[n1][m1] != -1) return dp[n1][m1];
        long r = 0;
        for (int i = 0; i <= n1; ++i) {
            for (int j = 0; j <= m1; ++j) {
                if (i == n1 && j == m1) continue;
                long t1 = rec(i, j);
                long t2 = C[n1][i];
                long t3 = C[m1][j];
                int c1 = (n1 - i) * (m1 + m2) + (m1 - j) * (n1 + n2) - (n1 - i) * (m1 - j);
                long t4 = P[c1];
                r = (r + t1 * t2 % MOD * t3 % MOD * t4 % MOD) % MOD;
            }
        }
        int c = (n1 + n2) * (m1 + m2) - n2 * m2;
        r = (P1[c] - r) % MOD;
        if (r < 0) r += MOD;
        return dp[n1][m1] = (int)r;
    }

    public int howManyWays(int v[], int h[]) {
        Arrays.sort(v);
        Arrays.sort(h);
        if (v[v.length - 1] != h[h.length - 1]) return 0;
        long ans = 1;
        for (K = 1; K <= v[v.length - 1]; ++K) {
            int n1 = 0, n2 = 0;
            for (int cur : h) {
                if (cur == K) ++n1;
                if (cur > K) ++n2;
            }
            int m1 = 0, m2 = 0;
            for (int cur : v) {
                if (cur == K) ++m1;
                if (cur > K) ++m2;
            }
            if (m1 == 0 && n1 == 0) continue;
            P[0] = P1[0] = 1;
            int hi = (m1 + m2) * (n1 + n2);
            for (int i = 1; i <= hi; ++i) {
                P[i] = P[i - 1] * K % MOD;
                P1[i] = P1[i - 1] * (K + 1) % MOD;
            }
            this.n2 = n2;
            this.m2 = m2;
            for (int i = 0; i <= n1; ++i) {
                for (int j = 0; j <= m1; ++j) {
                    dp[i][j] = -1;
                }
            }
            ans = ans * rec(n1, m1) % MOD;
        }
        return (int)ans;
    }  
}

No comments:

Post a Comment